
 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp.. 227700--227722 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.042 Page | 1

BBuuiilltt--IInn TTeessttiinngg FFoorr CCoommppoonneenntt BBaasseedd SSooffttwwaarree DDeevveellooppmmeenntt iinn

EEmmbbeeddddeedd SSyysstteemmss
 Divya Shree

Abstract: Component-based software development (CBSD) has made it easier to develop an embedded system.

Many approaches have been proposed to create embedded systems through components. While creating a

component-based embedded software system it is difficult to test the functionality of the component. This paper

proposes a method to enhance testability of an embedded component using PECOS model approach of component-

based software development. Built-in test cases have been incorporated into the component and a case study is

shown using implementation in java. The method makes the task of integration testing of embedded components

easier.

Keywords: Component-based Software Engineering, Embedded System, Field Devices, Built-in, COTS,

Component model.

1. Introduction
During the past decade software engineering

community has learned to design software for

embedded systems using Component-based

technology. Software forthe embedded systems

isplatform dependent. It is difficult to maintain,

upgrade and port to other platforms but development

using component-based technology has made it easier

and faster. The components trustworthiness is an issue

of vital importance. The component being developed

for an embedded software system must be compatible

with the main system to which it will be

ported.Various approaches have been adopted to build

a component-based embedded software system.

The commonly used approaches or the component

models arepecos, saveCCM, procom, comdes II etc.

Testing of the embedded software components is a

difficult as well as a tedious task because of many test-

cases involved for checking component compatibility

and behavior. So built-in test cases can be introduced

into the components to check the compatibility and

also make component behavior adjustments if

possible.

The organization of rest of the paper is as follows:

firstly in section 2 we discuss the need for built-in test-

cases in the embedded software system and the

principles of an embedded system along with the built-

in. Section 3 exposes the new approach that we have

proposed considering the example application which

we developed to our view point clear. The section 4

includes the implementation work and at last in

section 5 the paper closes with the final results.

2. Need for Built-in in Embedded

Software System
Embedded software system’s components are

expected to be of high quality, but in certain cases due

to lack of relevant information (inaccurate application

environment, insufficient documentation of the

component) provided by the developer can mislead the

component user [1]. Hence testing the components has

become a major concern while developing complete

embedded software.The CBSE approach is inefficient

in testing and verification of the components because

the black-box testing approach used here is concerned

only with the specifications and not the design or code

of the component [4]. Also generating test-cases for

each component separately becomes a difficult task.

Hence to overcome the problem of component

testability and verification problems BIT (Built-in

tests) are taken into consideration.

2.1. Embedded Software System
Embedded software systems are microprocessor based

systems that are used in large range of computer

systems for monitoring and controlling complex

processes. Such systems consist of hardware and

software integrations in which the software reacts to

the environment.An embedded component is

developed such that it provides specific functionality

to the system and testing the component integration

into the embedded system is of vital importance.

2.2. Built-in-Testing (BIT) in Embedded

Software System
With the increased use of CBSD approach for

developing software system and disadvantage of the

testing methodologies followed, Built-in-Testing

(BIT)has been adopted as a component testing

technique which not only improves the quality of the

system but also helps in checking the compatibility of

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp.. 227700--227722 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.042 Page | 2

the software components with each other. According

to Binder [2] “Built-in-test refer to code added to an

application that checks the application at runtime”.

BIT is a Design-for-Testability (DFT) technique; they

contain test cases or possess facilities for generating

the test cases into the component. The test cases are

explicitly described in the software source code as

member function forenhancing the software testability

and maintainability [3].

3. New approach
In embedded system it is very necessary to check the

compatibility of the components of an embedded

software system with the main system in which it will

be used in future. Not only reliability but also software

quality is of vital importance which can be quantified

in terms of testability and maintainability. Till date

off-the-shelf (COTS) components had undergone unit

testing by the manufacturer where no testability and

maintainability at unit level is available to the system

integrator. This level of trust cannot be afforded when

dealing with the embedded or the safety critical

applications. So we have developed a method to

enhance the testability and monitoring of an embedded

component considering a component model [5].

Various component models have been developed for

embedded systems such asrubus, comdes II, pecos,

saveCCM, procometc [8]. For our method we have

used the pecos component model of embedded

software development.

PECOS component model was originally developed

for field device systems in which Component

Composition (CoCo) description language was used

for specifying the components [6]. The

implementation for this model can be in any of the

object-oriented languages (c, c ++, java etc). Our

method makes use of java language for the

implementation of the component as well as the BIT.

The method provides an idea of better testing and

check the compatibility of the components of an

embedded software system by incorporating the test

cases into the source code of the components at the

development stage. The built-in-tests make the

software testing self-contained [7]. The method

proposed includes case study in which component

have been developed using java language. The test-

cases have been built inside the source code itself in

the form of a function.

3.1. Example application
The application that we have developed is based on

Pecos component model. The model works basically

for field devices. A field device is an embedded

system which uses sensors to continuously gather data,

such as temperature, pressure or rate of flow and then

react to the environment by controlling the actuators

[5]. The application generated by us consists of a

component or the class (tempcontrol2()) coded in java

language. The basic purpose of this component is to

switch its task by behaving as an air-conditioner or a

heater according to the temperature taken as an input

from the user. The component developed is such that it

represents an important characteristic of a high-quality

software component i.e. Reusability. Reusability in the

sense that the single component developed performs

the task of both an air-conditioner and the heater. The

functionality of the component remains the same i.e.

reading the temperature as an input from user and then

reacting to the environment accordingly which in turn

shows the reusability characteristic. Hence it solves

the purpose of being an embedded component with a

specific functionality with reusability considered.

Component-based usability testing is a major concern

when software components directly interact with the

users while developing the component. This has been

done by incorporating the test-case (testcases()) as a

member function into the component. The component

itself is a class that constitutes various data members

and the member functions. In our application the class

named “tempcontrol2()” consists of a member

function-“control()” which provides the conditions on

when to switch between the two tasks according to the

temperature change. Another member function-

“testcases()” have been coded which is the built-in

test-case to check whether the embedded component is

compatible with the external environment or not. The

test-case checks for different conditions and the action

that need to take place likewise.

4. Implementation Code
The code for the testcases() is as follows:

Publicvoidtestcases()

{

Scanner sc = newScanner(System.in);

Scanner sc1 = newScanner(System.in);

System.out.println("enter the high temperature");

booleanhh = sc.hasNext();

System.out.println("enter the room temperature");

floatrr=sc1.nextFloat();

System.out.println("enter the user temperature");

floatuu = sc1.nextFloat();

hightemp = hh;

usertemp=uu;

roomtemp=rr;

control();

if((hh==true)&&(uu>rr))

{

if(x=='3')

System.out.println("verified");

else
System.out.println("error");

}

 VVoolluummee 77 •• NNuummbbeerr 11 SSeepptt 22001155 -- MMaarrcchh 22001166 pppp.. 227700--227722 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallssss..ccoomm

DOI: 10.090592/IJCSC.2016.042 Page | 3

elseif((hh==true)&&(uu<=rr))

{

if(x=='0')

System.out.println("verified");

else
System.out.println("error");

}

elseif((hh==false)&&(uu<rr))

{

if(x=='2')

System.out.println("verified");

else
System.out.println("error");

}

else
{

if(x=='0')

System.out.println("verified");

else
System.out.println("error");

}

}Will have to put the code in a box after the complete

text is written

The above component along with the built-in test-case

helps in testability of the compatibility of the

embedded software system with the environment or

the main system in which it has to be plugged in.

5. Conclusions
The method proposed here can simplify the method

testing the compatibility of an embedded software

system (component) with the external environment

into which it has to be plugged in. the test-cases

incorporated into the component source code are

check the behavior of the embedded software system.

These test-cases are behavioral in nature that predicts

the behavior of the component [2]. Hence no

additional resources are required for the test case

generation. This approach makes it easier for the

system developer to integrate the components with

each other with no harm to functionality of each

component as well as the compatibility of such system

with the main system is given importance.

6. References
[1] Sami Beydeda, Bundesamt fur Finanzen; Research

in Testing COTS Components – Built-in Testing

Approaches; IEEE; 2005.

[2] Franck Barbier, Nicolas Belloir; Component

Behavior Prediction and Monitoring through Built-In

Test; IEEE; 2003.

[3] Yingxu Wang, Graham King, HakanWickburg; A

Method for Built-in Tests in Component-based

Software Maintenance; Research Centre for Systems

Engineering, Southampton Institute.

[4] Irena Pavlova, AleksandarDimov; Advanced

Approach foe Effective Verification of Component

Based Software Systems; 2007.

[5] Michael Winter, Oscar Nierstrasz, Peter Muller;

Components for Embedded Software – The PECOS

Approach.

[6] DayandNorhayatiAbangJawawi, SafaaiDeris,

RosbiMamat; A Component-Oriented Programming

Framework for Developing Embedded Mobile Robot

Software using PECOS Model.

[7] Eric Piel et al; On Coping with real-time software

dynamic inconsistency by built-in-tests.

[8] Kung-Kiu Lau, Zheng Wang; A Taxonomy of

Software Component Models; IEEE; 2005.

